LA-UR-12-22256

Approved for public release; distribution is unlimited.

Title: Nuclear Fuel Cycle & Vulnerabilities

Author(s): Boyer, Brian D.

Intended for: LANL Course: 2012 Nuclear Safeguards Technology & Policy Workshop

Disclaimer:

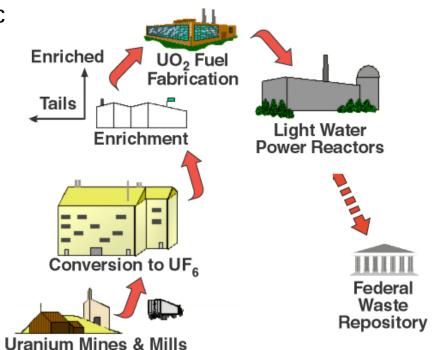
Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

2012 Nuclear Safeguards Technology & Policy Workshop June 18-22

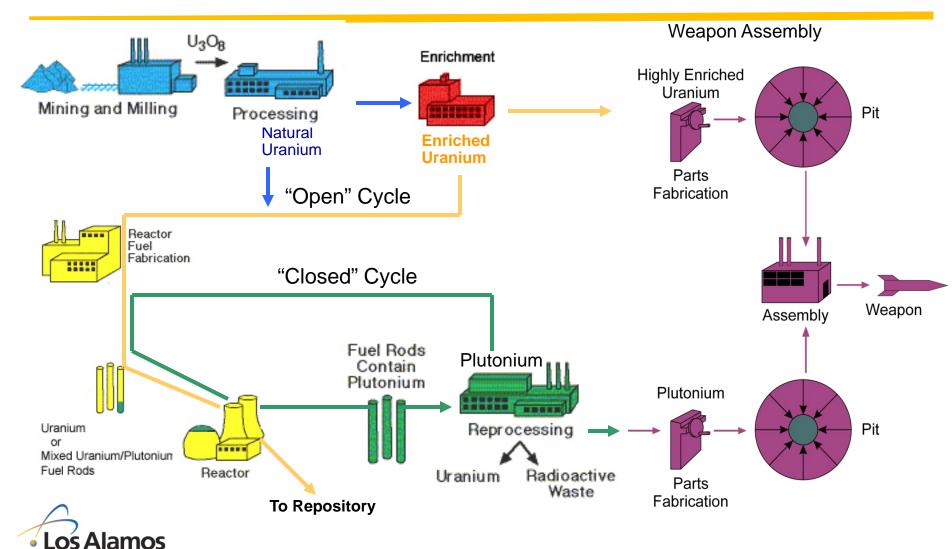
Nuclear Fuel Cycle & Vulnerabilities

Brian D. Boyer


Project Leader International Safeguards Nuclear Nonproliferation Division / N-4 Los Alamos National Laboratory

Definition of the Nuclear Fuel Cycle

- Processes to obtain, refine, and exploit nuclear material for a specific purpose
 - Nat U, Th Source material
 - ²³⁵U, ²³³U, Pu Fissile Material
- There are several different types and subcategories
 - Power
 - Weapons
 - Naval Reactor Fuel
 - Radioisotope Production
 - Research
- · Cycles also vary:
 - Degree of opportunity to obtain directly weapons-usable material
 - Degree of difficulty in safeguarding
 - Intertwining of the civil and military



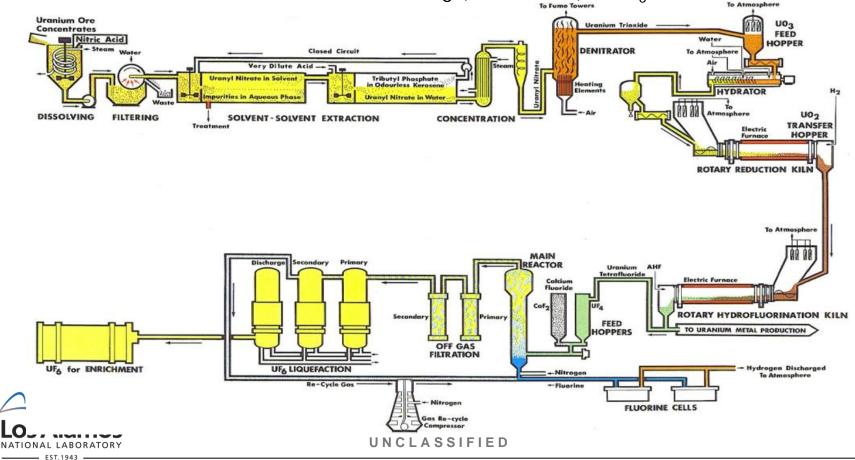
Example: The Open nuclear fuel cycle for power production in the United States

Civil and military fuel cycles overlap

Mining

- Mining and Milling
 - Uranium
 - > Key to fuel cycle of today
 - > ...and near future!

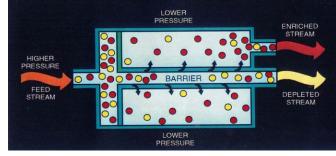
- Thorium more abundant than Uranium
 - ➤ Thorium Fuel Cycle never has taken off
 - ➤ Note large Resources in India


2009 Uranium Production (tU)				
Kazakhstan	14020			
Canada	10173			
Australia	7982			
Namibia	4626			
Russia	3564			
Niger	3243			
Uzbekistan	2429			
USA	1453			
Ukraine	840			
China	750			

Conversion

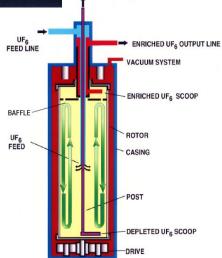
Take Uranium Ore Concentrate and put into form for

Nat Uranium Fuel or Further Processing (Enrichment) – UF₆ Product


Enrichment

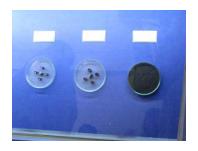
Various Historic Enrichment concepts

- EMIS


- Gaseous Diffusion

– Gas Centrifuge

UNCLASSIFIED


DEPLETED UF₆ OUTPUT LINE

Fuel Fabrication

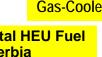
Fuel Fabrication

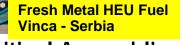
- Natural Uranium
- LEU
- HEU
- MOX
- $Th/^{233}U$
- Fuel Forms
 - > Metals
 - ➤ Oxides
 - > Ceramics

Reactors – All Classes

LWR

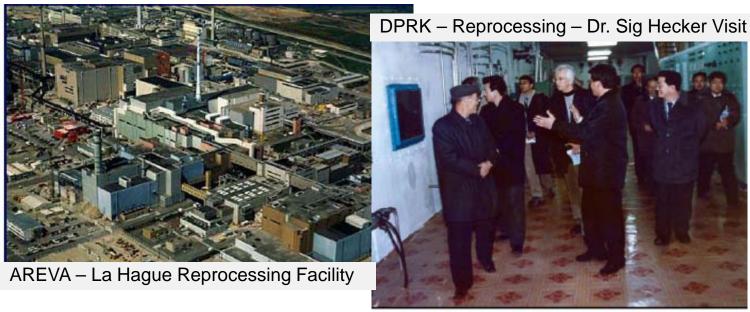
- PWR
- BWR
- VVER
- Gen III / Gen III+
- On-Load
 - CANDU
 - RMBK
- **Gas-Cooled Reactors**
- **Fast Reactors**
- **Breeders**
- Gen IV


Research Reactors and Critical Assemblies



GE BWR Containment Shoreham, NY

Calder Hall, UK Gas-Cooled 1950's vintage



CANDU Calandria

Reprocessing

- History and controversy / Nonproliferation and safeguards
- PUREX and other aqueous techniques
- Electrochemical
- Future

Waste Disposal

Spent Fuel Storage – short to medium term

Geological Repositories

Proliferation Challenges, Proliferation Indicators and Weaponization

- Proliferation challenges
 - Material Attractiveness
 - The Safeguards Technical Objective INFCIRC/153 (Corr.) Para. 28:
 - ... the objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection...
- Proliferation indicators
 - What makes you suspicious?
- Weaponization
 - The route

Figure-of-Merit (FOM) for Material Attractiveness

- FOM₁ is a material property[†]
 - Measure of the attractiveness of material from the perspective of a Host State or sub-national entity with intentions to proliferate nuclear explosive devices:

$$FOM_{1} = 1 - \log_{10} \left(\frac{M}{800} + \frac{Mh}{4500} + \frac{M}{50} \left[\frac{D}{500} \right]^{\frac{1}{\log_{10} 2}} \right)$$
Size Factor Stability Acquisition

M—bare critical mass in unpurified metal form (kg)

h—heat content in unpurified metal form (W/kg)

D-dose rate of 0.2·M @ 1 m (rad/h)

• FOM₁ bounds the range of nuclear materials that can potentially be processed and fabricated into a nuclear explosive device by an adversary

Factor

Of use in determining proliferation resistance of a nuclear fuel cycle option

Source:

Charles G. Bathke, et al., "Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios," *Nuclear Technology*, Vol. 179, No. 1, July 2012, pp. 5-30.

Factor

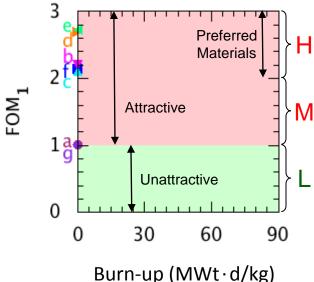
Relationship between Attractiveness Levels and FOM

FOM	Weapons Utility	Attractiveness	Attractiveness Level†	
> 2	Preferred	High	~B	
1-2	Attractive	Medium	~C	
0-1	Impractical	Low	~D	
< 0	Very Impractical	Very Low	~E	

Source: †Bathke, et al., "An Assessment of the Attractiveness of Material Associated with Thorium/Uranium and Uranium Closed Fuel Cycles from a Safeguards Perspective," 2010. (LA-UR-10-04477 and LA-UR-10-03899)

- Attractiveness Levels[†] and FOM of nuclear materials—as defined by the Department of Energy (DOE)[‡]—are similar but not equivalent
- From a PR&PP perspective
 - Desirable FOM attractiveness designations are Low and Very Low
 - Undesirable FOM attractiveness designations are High and Medium
- There are benefits to developing processes that yield products with lower FOM values

Source and note: † "Nuclear Material Control and Accountability," U. S. Department of Energy manual DOE M 470.4-6 Chg 1 (August 14, 2006), http://www.directives.doe.gov. ‡ Depleted, Enriched, and Normal Uranium; ²³³U; ²³⁸Pu; ²³⁹Pu; ²⁴⁰Pu; ²⁴¹Pu; ²⁴²Pu; ²⁴¹Am; ²⁴³Am; Bk; ²⁵²Cf; Cm; ²H; Enriched Lithium; ²³⁷Np; Th; ³H; and Uranium in Cascades.



Format of FOM Plots

FOM₁ results shown for each case

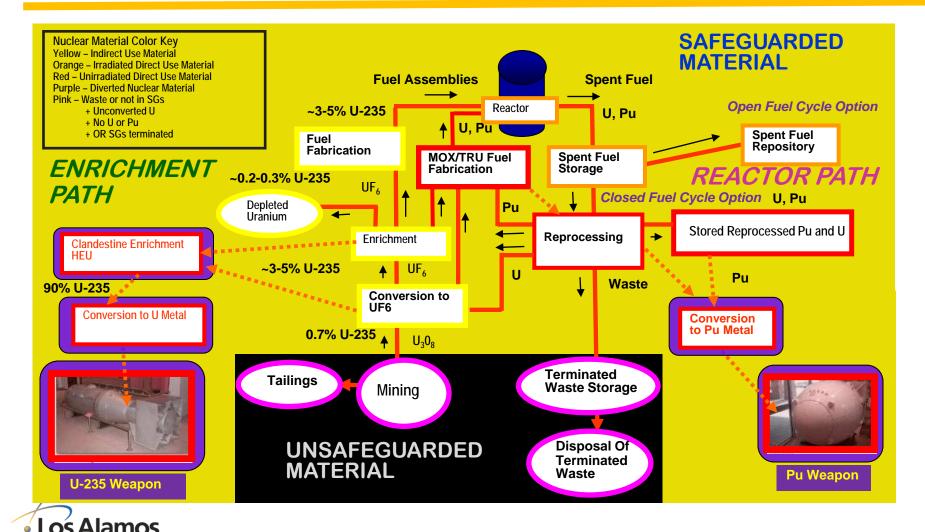
Charles G. Bathke et al., "Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios," Nuclear Technology, Vol. 179, No. 1, July 2012, pp. 5-30.

- The meaning of FOM values
 - FOM > 2 (red area): material is preferable for use in nuclear explosive devices
 - FOM > 1 (red area): material is attractive and should be safeguarded and secured
 - FOM < 1 (green area): material is unattractive, but may still be weapon usable
- The FOM values of seven common materials (delineated in the blue box below) are shown along the y-axis


```
a - LEU (20% 235U)
                                                                                                                       q - {}^{238}Pu/{}^{239}Pu (80:20)
                                      c - {}^{237}Np
                                                                                e – WG-Pu (94% <sup>239</sup>Pu)
b - HEU (93% <sup>235</sup>U)
                                      d - {}^{233}U (10 ppm {}^{232}U)
                                                                                f – RG-Pu
```

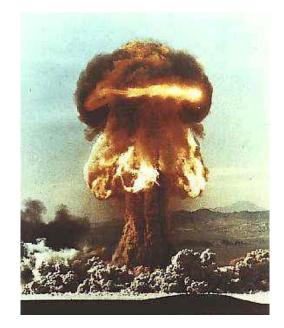

Important Conclusions about Materials Attractiveness

- Plutonium is attractive for use in a nuclear explosive device
 - Co-extracting Pu with other actinides does not render an unattractive product
 - Co-extracting Am with Cm does produce a product that is unattractive
- Addition or dilution can render Pu or a TRU mixture unattractive
 - Pu + U → 80% ²³⁸U concentration
 - TRU + U \rightarrow 75% ²³⁸U concentration
 - TRU + Ln \rightarrow >20% of all Ln in SNF


Source:

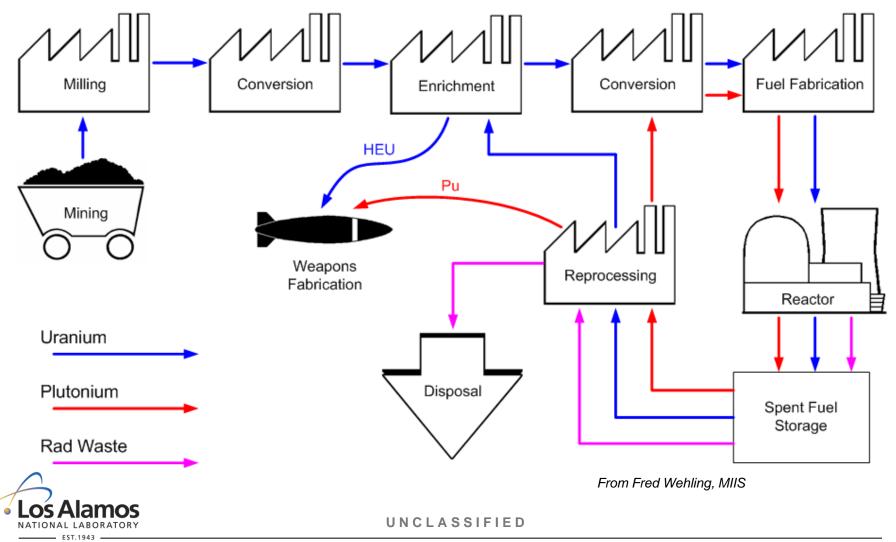
Charles G. Bathke, et al., "Attractiveness of Materials in Advanced Nuclear Fuel Cycles for Various Proliferation and Theft Scenarios," *Nuclear Technology*, Vol. 179, No. 1, July 2012, pp. 5-30.

The Fuel Cycle with Safeguards Aspects


Objectives of International Safeguards System

- "The safeguards system should be designed to provide credible assurances that there has been
 - no diversion of declared nuclear material
 - no undeclared nuclear material and activities "

(IAEA Board of Governors, March 1995)



How can we detect proliferation? What proliferation indicators?

Plutonium and High-enriched Uranium Could Be Diverted

Proliferation Pathway Analysis

- Consider the Nuclear Fuel Cycle
- Consider weaponization activities required to successfully produce & deliver nuclear weapon

Analyze State to determine which components are

present or missing

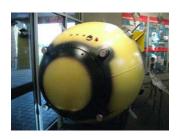
		Detectability (Selected Criteria)		
		ldentifiable Structure	Thermal Signature	Effluents
Plutonium Production	Reactor	Yes	Yes	No
	Reprocessing	No	No	(Yes)
Uranium Enrichment	Calutron/EMIS	No	Yes	Yes
	Gaseous diffusion	Yes	Yes	Yes
	Centrifuge	No	No	No

Proliferation Pathway Analysis Critical Technologies

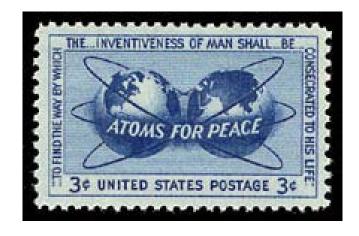
- Fissile Nuclear Material (NM) production & handling
 - Uranium (U) enrichment & facilities with isotope separation capabilities
 - Plutonium (Pu) production reactors
 - Pu separation & purification (reprocessing), metallurgy
 - Criticality & health physics

Source:

Nuclear Proliferation and Safeguards: Appendix Volume II, Part Two June 1977


OTA-BP-ENV-177 NTIS order #PB-275843 GPO stock #052-003-01360-6 (John Lamarsh – consulted at BNL)

Weaponization of the Atom


- The path to weapons
 - Plutonium Path

- Uranium Path

Atoms for Peace Conundrum

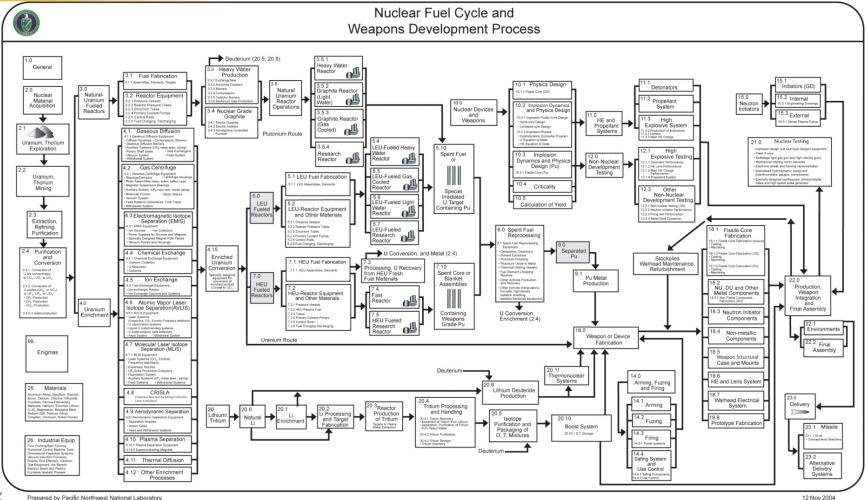
Proliferation Pathway Analysis Weaponization Technology

Weaponization

- Integrated computational modeling
- Fissile metal part fabrication
- Electronic fire-sets, fusing/detonation, high explosives testing, modeling, delivery vehicle development, nuclear testing, ...

History of Manhattan Project

- What can be learned 70 years later?
 - It had no assistance start from scratch
 - It was comprehensive
 - It is well documented
 - It worked


Lessons of Manhattan Project

- Good Program leadership
- Quality senior staff
- Large number of qualified staff
- Large industrial base
 - Indigenous P-5 Industrial Powers (G8 G20)
 - Foreign suppliers Khan network
- Safety
- Security
- Finance
- Political Will
- Time

Nuclear Fuel Cycle With Weapons Development Process

Chuck E Willingham (509) 372-4159

LOS Allamos

NATIONAL LABORATORY

R&D Analysis

- Look for trends and patterns in R&D
 - Not just topical research
- Need to build databases of
 - Topics
 - Authors
 - Affiliated individuals
 - Institutions
- Look for relationships and patterns over time

Civil Nuclear Energy and Proliferation (Dual-Use Dilemma) (Technical Cooperation vs. Safeguards)

- Reactors used to produce energy or for research
 - Produce plutonium that could be used in nuclear explosives
- The same facilities used to enrich uranium or reprocess plutonium for peaceful purposes can be used to produce material for nuclear weapons
- Undeclared or secret nuclear fuel cycle facilities could also be used for this purpose
- Essential equipment lists for facilities helpful
- Key concern: training in nuclear skills migrates to weapons
 - Nuclear, Chemical, Electrical, Engr., Nuclear Physics

Conclusions

- Nuclear fuel cycle has complexities and vulnerabilities
- Material Attractiveness Key Lessons
 - Plutonium is attractive for use in a nuclear explosive device
 - ➤ Co-extracting Pu with other actinides does not render an unattractive product
 - ➤ Co-extracting Am with Cm does produce a product that is unattractive
 - Addition or dilution can render Pu or a TRU mixture unattractive
- Proliferation Indicators
 - Plutonium path reactors + reprocessing
 - Uranium path enrichment
- Reactor Technology can be a gateway for proliferation
- Small scale lab activities can be clue to larger clandestine efforts

